This article from http://www.3alymni.info/2010/10/favicon.html#ixzz1G1gyELTp
twitter
rss

Lecture 1: Atomic Theory of Matter


Lecture 2: Discovery of Nucleus




Lecture 3: Wave-Particle Duality of Radiation and Matter




Lecture 4: Particle-Like Nature of Light



Lecture 5: Matter as a Wave


Lecture 6: Schrodinger Equation for H Atom



Lecture 7: Hydrogen Atom Wave functions




Lecture 8: P Orbitals


Lecture 9: Electronic Structure of Multi-electron Atoms



Lecture 10: Periodic Trends in Elemental Properties



 

Lecture 11: Why Wavefunctions are Important?


Lecture 12: Ionic Bonds - Classical Model and Mechanism


Lecture 13: Kinetic Theory - Behavior of Gases



Lecture 14: Distribution Molecular Energies




Lecture 15: Internal Degrees of Freedom





Lecture 16: Intermolecular Interactions






Lecture 17: Polarizability


Lecture 18: Thermodynamics and Spontaneous Change





Lecture 19: Molecular Description of Acids and Bases


Lecture 20: Lewis and Bronsted Acid-Base Concepts



Lecture 21: Titration Curves and pH Indicators

 



Lecture 22: Electrons in Chemistry: Redox Processes


Lecture 23: Cell Potentials and Free Energy


Lecture 24: Theory of Molecular Shapes


Lecture 25: Valence Bond Theory


Lecture 26: Molecular Orbital Theory






Lecture 27: Molecular Orbital Theory for Diatomic Molecules




Lecture 28: Molecular Orbital Theory for Polyatomic Molecules




Lecture 29: Crystal Field Theory - I





Lecture 30: Crystal Field Theory - II


Lecture 31: Color and Magnetism of Coordination Complexes

 


Lecture 32: Coordination Complexes and Ligands






Lecture 33: Ligand Substitution Reactions: Kinetics





Lecture 34: Bonding in Metals and Semiconductors




Lecture 35: Metals in Biology (Audio Only)  (Audio Lecture)

http://ia310812.us.archive.org/3/items/MIT5.112F05/ocw-5.112-12dec2005.mp3


Lecture 36: Nuclear Chemistry and the Cardiolite(R) Story





MIT Online Course, Fall 2008 , Prof. Catherine Drennan

free counters